A novel signal detection algorithm for identifying hidden drug-drug interactions in adverse event reports

نویسندگان

  • Nicholas P. Tatonetti
  • Guy Haskin Fernald
  • Russ B. Altman
چکیده

OBJECTIVE Adverse drug events (ADEs) are common and account for 770 000 injuries and deaths each year and drug interactions account for as much as 30% of these ADEs. Spontaneous reporting systems routinely collect ADEs from patients on complex combinations of medications and provide an opportunity to discover unexpected drug interactions. Unfortunately, current algorithms for such "signal detection" are limited by underreporting of interactions that are not expected. We present a novel method to identify latent drug interaction signals in the case of underreporting. MATERIALS AND METHODS We identified eight clinically significant adverse events. We used the FDA's Adverse Event Reporting System to build profiles for these adverse events based on the side effects of drugs known to produce them. We then looked for pairs of drugs that match these single-drug profiles in order to predict potential interactions. We evaluated these interactions in two independent data sets and also through a retrospective analysis of the Stanford Hospital electronic medical records. RESULTS We identified 171 novel drug interactions (for eight adverse event categories) that are significantly enriched for known drug interactions (p=0.0009) and used the electronic medical record for independently testing drug interaction hypotheses using multivariate statistical models with covariates. CONCLUSION Our method provides an option for detecting hidden interactions in spontaneous reporting systems by using side effect profiles to infer the presence of unreported adverse events.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

مقایسه روشهای اپیدمیولوژیک در شناسایی سیگنالهای عوارض دارویی ایران

Background and Objectives:To compare three different methods of signal detection applied to the Adverse Drug Reactions registered in the Iranian Pharmacovigilance database from 1998 to 2005. Materials and Methods:All Adverse Drug Reactions (ADRs) reported to Iranian Pharmacovigilance Center from March 1998 through January 2005, were included in the analysis. The data were analyzed based on thre...

متن کامل

طراحی و روش نمونه‌گیری مطالعه آگاهی، نگرش و عملکرد خانوارها و کارکنان بهداشتی در خصوص تغذیه و ریزمغذیها در استانهای پایلوت برنامه

Background and Objectives:To compare three different methods of signal detection applied to the Adverse Drug Reactions registered in the Iranian Pharmacovigilance database from 1998 to 2005. Materials and Methods:All Adverse Drug Reactions (ADRs) reported to Iranian Pharmacovigilance Center from March 1998 through January 2005, were included in the analysis. The data were analyzed based on thr...

متن کامل

An Integrative Data Science Pipeline to Identify Novel Drug Interactions that Prolong the QT Interval

INTRODUCTION Drug-induced prolongation of the QT interval on the electrocardiogram (long QT syndrome, LQTS) can lead to a potentially fatal ventricular arrhythmia known as torsades de pointes (TdP). Over 40 drugs with both cardiac and non-cardiac indications are associated with increased risk of TdP, but drug-drug interactions contributing to LQTS (QT-DDIs) remain poorly characterized. Traditio...

متن کامل

Extraction of Drug Crime Patterns and Identifying People at Risk Using Data Mining Techniques

Introduction: In recent years, technology advancement and the growth of information technology in organizations have provided a huge source of data stored in the field of drug-related offenses. Analyzing these data and discovering hidden patterns in it can help detect and prevent the occurrence of crimes in this area. This paper aimed to identify the susceptible people to drug trafficking in Si...

متن کامل

Extraction of Drug Crime Patterns and Identifying People at Risk Using Data Mining Techniques

Introduction: In recent years, technology advancement and the growth of information technology in organizations have provided a huge source of data stored in the field of drug-related offenses. Analyzing these data and discovering hidden patterns in it can help detect and prevent the occurrence of crimes in this area. This paper aimed to identify the susceptible people to drug trafficking in Si...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American Medical Informatics Association : JAMIA

دوره 19 1  شماره 

صفحات  -

تاریخ انتشار 2012